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Abstract

Using the thinner steel reinforcing plates in the elastomeric multilayer isolators could reduce the weight of the iso-
lators but would have a large effect on the buckling load of an isolator, which cannot be analyzed by the Haringx the-
ory, a traditional approach on the stability analysis of rubber bearings. The buckling load of the isolators, which
includes the effect of the flexibility of the steel reinforcing plates, is analyzed by a beam theory in which shear deforma-
tion and warping of the cross-section are considered. Pressure distributions in the elastomeric layer bonded to flexible
reinforcements under compression force, bending moment and warping moment are derived from an assumed displace-
ment field, from which the warping-related parameters used in the beam theory are established. The thickness of the
steel reinforcement in the isolators is determined from the buckling load of the isolators, which is solved from a cubic
equation established by the beam theory.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A laminated rubber bearing used in seismic isolation has many layers of elastomer reinforced by steel
plates. The reinforcing plates constrain the elastomer from lateral expansion and provide a high compres-
sion and bending stiffness, but have no effect on the shear stiffness. To analyze the compression stiffness and
bending stiffness of the isolators, the steel reinforcement is treated as completely rigid; the elastomeric layer
is assumed as completely buck-incompressible (Gent and Lindley, 1959; Gent and Meinecke, 1970). Kelly
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(1997) presents a ‘‘pressure approach’’ to obtain the major terms of the compression stiffness and bending
stiffness of an incompressible elastic layer bonded to rigid plates. The ‘‘pressure approach’’ is then extended
to analyze the compression stiffness and bending stiffness of the fiber-reinforced isolators where the rein-
forcement is treated as extensible (Tsai and Kelly, 2001, 2002a,b). When deriving the stiffness of bonded
elastic layers, the deformation of the elastic layer is always assumed that horizontal planes remain plane
and vertical lines become parabolic. The derived stiffness based on these two assumptions has been shown
to close to the results of finite element analysis (Tsai and Lee, 1998, 1999).

The isolators, whose deformation is dominated by shear, are always used to carry vertical load. It is
essential that their stability can be assessed in a reasonable simple manner. Haringx theory (1948), which
includes the shear effect in the stability analysis of the elastic column, becomes the standard approach to
analyze the stability of multilayer elastomeric bearings (Gent, 1964), and is extended to the viscoelastic col-
umn to study the behavior of energy dissipation in the isolators (Tsai and Hsueh, 2001). In Haringx theory,
plane sections that are normal to the beam axis before deformation remain plane but not necessarily normal
after deformation. In other words, applying Haringx theory to analyze the buckling behavior of elastomeric
isolators is based on the premise that the steel reinforcing plates are rigid in bending. A beam theory
has been developed that extends Haringx theory by allowing the cross-sections to distort into a non-planar
surface (Kelly, 1994; Tsai and Kelly, in press).

For the design purpose, the thickness of the reinforcing plates is selected by rule of thumb since there is
no information as to how thick the plates need to be to ensure that they are rigid. To reduce the weight of
the isolators, it would be advantageous to use thinner steel plates. This modification would have a large
effect on the buckling load of an isolator. To understand the influence of the flexibility of the reinforcing
plates on the buckling of the isolators, a theoretical approach on the stability analysis of isolators is devel-
oped in this paper. The isolator is idealized in a plane-strain state. Pressure distributions in the elastomeric
layer bonded to flexible reinforcements under compression force, bending moment and warping moment
are derived, which are utilized to determine the effective stiffness and the warping function of the cross-sec-
tion. After the warping-related parameters are established, the beam theory of Tsai and Kelly (in press) is
applied to study the buckling load of the isolators. Since the beam theory of Tsai and Kelly utilizes the lin-
ear stiffness, the infinitesimal deformation theory is employed in the elastomeric layers and reinforcements
to derive the effective stiffness of seismic isolators.
2. Pressure distribution in elastomeric layers

To analyze the stiffness of the isolator, a single layer of elastomer bonded between reinforcing plates is
considered. The shape of the isolator is idealized as an infinite-long rectangular strip. As shown in Fig. 1,
the elastomeric layer has a width of 2a and a thickness of te. Its top and bottom surfaces are perfectly
bonded to reinforcements that have a thickness of tf. A coordinate system (x,y,z) is established by locating
the origin at the center of the elastomeric layer and the y coordinate direction is attached to the infinitely
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Fig. 1. Single layer of elastomer bonded to reinforcements.
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long side. The deformation of the pad is in a plane strain state, so that the displacement component in the y
direction vanishes.

Under a compressive force P in the vertical direction, the thickness of the elastomeric layer is reduced by
D as shown in Fig. 2. When subjected to a bending moment M, the top and bottom reinforcements remain
plane and rotate to form an angle w as shown in Fig. 3. Under a warping moment Q as shown in Fig. 4, the
deformation of the reinforcements is measured by /X(x) where X is a function describing the warping shape
and / is the multiplier of the warping shape. The warping function is a cubic function defined as
XðxÞ ¼ x
a

� �3

þ x
x
a

� �
ð1Þ
where x is the warping coefficient to be determined.
∆/2

∆/2

P

P

Fig. 2. Deformation under compression force.
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Fig. 4. Deformation under warping moment.
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Fig. 3. Deformation under bending moment.
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Under the combined loading of P, M and Q, the displacements of the elastomer in the x and z coordinate
directions, denoted as u and w, respectively, are assumed to have the form
uðx; zÞ ¼ u0ðxÞ 1 � 4z2

t2e

� �
þ u1ðxÞ ð2Þ

wðx; zÞ ¼ ð�D � xw þ X/Þ z
te

ð3Þ
In Eq. (2), the term of u0 represents the kinematics assumption that vertical lines in the elastomer become
parabolic after deformation; the horizontal deformation is supplemented by additional displacement u1 that
is constant through the thickness and is intended to accommodate the stretch of the reinforcement. Eq. (3)
represents the assumption that the vertical deformation in the elastomer is linearly varied with the
thickness.

The elastomer is assumed to be incompressible, which means that the summation of normal strain com-
ponents is negligible and produces a constraint on displacements in the form
u;x þ w;z ¼ 0 ð4Þ

where the commas imply partial differentiation with respect to the indicated coordinate. Substituting Eqs.
(2) and (3) into the above equation and then taking integration through the thickness from z = � te/2 to
z = te/2 leads to
2

3
u0;x þ u1;x þ

1

te
ð�D � xw þ X/Þ ¼ 0 ð5Þ
The stress state in the elastomer is assumed to be dominated by the internal pressure p, such that the
normal stress components of the elastomer, rxx and rzz, can be simplified as (Kelly, 1997)
rxx � rzz � �p ð6Þ

Under this stress assumption, the equilibrium equation in the x direction of the elastomer becomes
�p;x þ sxz;z ¼ 0 ð7Þ
where sxz is the shear stress having the form, from Eqs. (2) to (3),
sxz ¼ Ge

z
te

�8
u0

te
� w þ X;x/

� �
ð8Þ
with Ge being the shear modulus of the elastomer. Substitution of this into Eq. (7) gives
p;x ¼
Ge

te
�8

u0

te
� w þ X;x/

� �
ð9Þ
The thickness of reinforcements is much smaller than the thickness of elastomeric layers, so that the
deformation of reinforcements in the vertical direction can be neglected and only the deformation in the
horizontal direction is considered. In the laminated elastomeric bearing, the top and bottom surfaces of
the reinforcement are bonded to the layers of the elastomer. The internal forces acting in the reinforcing
sheet are related to the shear stresses of the elastomeric layers through the equilibrium equation in the x
direction (Tsai and Kelly, 2001)
Nxx;xðxÞ þ sxzðx;�te=2Þ � sxzðx; te=2Þ ¼ 0 ð10Þ

where Nxx is the normal force in the x direction acting in unit length of the reinforcement along the y direc-
tion. Substitute Eq. (8) into (10) and then combine the result with Eq. (9), which leads to
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Nxx;x ¼ tep;x ð11Þ
At the edges of the pad, the normal stresses of the elastomer and the reinforcement are free, i.e. p(a) = 0
and Nxx(a) = 0, which indicates that, from Eq. (11),
NxxðxÞ ¼ tepðxÞ ð12Þ
The deformation in the reinforcement can be regarded as being in plane stress state within the x–y plane,
such that the stress–strain relation of the reinforcement is
u1;x ¼
1 � m2

f

Ef tf
Nxx ð13Þ
where Ef and mf are the elastic modulus and Poisson�s ratio of the reinforcement. Using Eqs. (12) and (13),
Eq. (5) becomes
2

3
u0;x ¼ � 1 � m2

f

Ef tf
tep �

1

te
ð�D � xw þ X/Þ ð14Þ
Differentiating Eq. (9) with respect to x and then using Eq. (14) to eliminate the term of u0,x leads to
p;xx � a2p ¼ 12
Ge

t3e
�D � xw þ X þ 1

12
t2eX;xx

� �
/

� �
ð15Þ
in which a is defined as
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12Geð1 � m2

f Þ
Ef tf te

s
ð16Þ
The shape factor of the elastomeric layer in the infinitely long strip pad is defined as S = a/te. The term on
the right-hand side of Eq. (15), t2eX;xx=12, which is equal to x/(2aS2), is negligible because the ‘‘pressure ap-
proach’’ is applicable to isolators with shape factors greater than about five (Kelly, 1997). With the bound-
ary condition p(a) = 0, the solution of the pressure in Eq. (15) has the form
pðxÞ ¼ pDðxÞ þ pwðxÞ þ p/ðxÞ ð17Þ
in which pD is the pressure distribution in the elastomer under the compression force P,
pDðxÞ ¼
12GeS

2

ðaaÞ2

D
te

� �
1 � cosh ax

cosh aa

� �
ð18Þ
pw is the pressure distribution in the elastomer under the bending moment M,
pwðxÞ ¼
12GeS

2

ðaaÞ2

aw
te

� �
x
a
� sinh ax

sinh aa

� �
ð19Þ
and p/ is the pressure distribution in the elastomer under the warping moment Q,
p/ðxÞ ¼ � 12GeS
2

ðaaÞ2

/
te

� �
x
a

� �3

þ x þ 6

ðaaÞ2

" #
x
a
� 1 þ x þ 6

ðaaÞ2

" #
sinh ax
sinh aa

( )
ð20Þ
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3. Effective stiffness of reinforced layers

Under the combined loading of P, M and Q, the internal virtual work of a single layer of elastomer and
a sheet of reinforcement is dominated by
dW i ¼
Z te=2

�te=2

Z
A

rzzdezz dAdzþ Ef t3f
12ð1 � m2

f Þ

Z a

�a
w;xxðx; te=2Þdw;xxðx; te=2Þdx ð21Þ
in which the second term of the right-hand side is the virtual work for the flexure deformation of the rein-
forcement, and the first term is the virtual work done by the normal stress in the elastomeric layer which can
be expressed as
Z te=2

�te=2

Z
A

rzzdezz dAdz ¼
Z a

�a
ðpD þ pw þ p/ÞðdD þ xdw � Xd/Þdx ð22Þ
In order to allow the virtual work to be decoupled as
Z te=2

�te=2

Z
A

rzzdezz dAdz ¼
Z a

�a
ðpDdD þ pwxdw � p/Xd/Þdx ð23Þ
we need to select a warping function X such that
Z a

�a
pwXdx ¼ 0 ð24Þ
and
 Z a

�a
p/xdx ¼ 0 ð25Þ
Substitution of Eqs. (1) and (19) into Eq. (24) leads to
Z a

�a

x
a
� sinh ax

sinh aa

� �
x
a

� �3

þ x
x
a

� �� �
dx ¼ 0 ð26Þ
from which x is solved as
x ¼ � 1 þ 6

ðaaÞ2
þ

2
15
ðaaÞ2

aa
tanh aa � 1 � 1

3
ðaaÞ2

" #
ð27Þ
Substituting Eq. (20) into (25), we obtain the same form of x as the above equation. Therefore, the warping
function X with the warping coefficient in Eq. (27) satisfies the decoupled conditions in Eqs. (24) and (25).

Considering the compression force P only as shown in Fig. 2, the principle of virtual work gives
PdD ¼ te

Z a

�a
ð�pDÞd �D

te

� �
dx ð28Þ
Substituting Eq. (18) into the above equation yields
P ¼ ðEAÞeff

D
te

ð29Þ
where (EA)eff is the effective compression stiffness defined as
ðEAÞeff ¼ aGeS
2 24

ðaaÞ2
1 � tanh aa

aa

� �
ð30Þ
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Considering the bending moment M only as shown in Fig. 3, the principle of virtual work gives
Mdw ¼ te

Z a

�a
ð�pwÞd �x

w
te

� �
dx ð31Þ
Substituting Eq. (19) into the above equation, the resultant moment becomes
M ¼ ðEIÞeff

w
te

ð32Þ
where (EI)eff is the effective bending stiffness defined as
ðEIÞeff ¼ a3GeS
2 24

ðaaÞ4
1 þ 1

3
ðaaÞ2 � aa

tanh aa

� �
ð33Þ
Considering the warping moment Q only as shown in Fig. 4, the principle of virtual work gives
Qd/ ¼ te

Z a

�a
ð�p/Þd X

/
te

� �
dxþ Ef t3f

12ð1 � m2
f Þ

Z a

�a
X;xx

/
2

d X;xx
/
2

� �
dx ð34Þ
Substituting Eqs. (1) and (20) into Eq. (34) and using the condition in Eq. (26) lead to
Q ¼ ðEJÞeff

/
te

ð35Þ
where (EJ)eff is the effective warping stiffness defined as
ðEJÞeff ¼ aGeS
2 16

5ðaaÞ2
� 3

7
� x

� �
þ 1

2kS3ða=tfÞ3

" #
ð36Þ
with k being
k ¼ ð1 � m2
f ÞGe

Ef

ð37Þ
4. Shear deformation

Under the lateral shear force, the shear deformation in the elastomeric layer consists of two parts as
shown in Fig. 5. One is related to the pure shear where the reinforcements remain planar and rotate an
angle w; the slope of the lateral deformation is h. The other is related the warping shear where the top
and bottom reinforcements have the same warping deformation. The horizontal and vertical displacements
corresponding to the shear deformation have the forms
uðx; zÞ ¼ hz ð38Þ

wðx; zÞ ¼ �xw þ X/ ð39Þ
The internal virtual work of a single layer of elastomer and a sheet of reinforcement for the shear defor-
mation is
dW i ¼
Z te=2

�te=2

Z
A

sxzdcxz dAdzþ Ef t3f
12ð1 � m2

f Þ

Z a

�a
w;xxðx; te=2Þdw;xxðx; te=2Þdx ð40Þ
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Fig. 5. Deformation under shear force and warping shear.
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in which the second term of the right-hand side is the virtual work for the flexure deformation of the rein-
forcement. Substituting Eqs. (38) and (39) into the above equation leads to
dW i ¼ teGe

Z a

�a
ðh � w þ X;x/Þdx

� �
dðh � wÞ þ teGe

Z a

�a
ðh � w þ X;x/ÞX;x dxþ 2Ef t3f

ð1 � m2
f Þa3

/

� �
d/ ð41Þ
which can be expressed in terms of force resultants as
dW i ¼ Vtedðh � wÞ þ Rted/ ð42Þ

where V is the shear force and R is the warping shear. From Eqs. (41) and (42), we have
V ¼ GeAðh � wÞ þ GeB/ ð43Þ

R ¼ GeBðh � wÞ þ GeC/ ð44Þ

in which A = 2a is the area of an unit length of the elastomeric layer; B and C are the two cross-section
properties of warping defined as
B ¼
Z a

�a
X;x dx ¼ 2ð1 þ xÞ ð45Þ

C ¼
Z a

�a
X2

;x dxþ 2Ef t3f
teGeð1 � m2

f Þa3
¼ 2

a
4

5
þ ð1 þ xÞ2 þ S

kða=tfÞ3

" #
ð46Þ
where k has been defined in Eq. (37).
The theory of Tsai and Kelly (in press) uses the two warping-related normal forces, NB and NC. In the

reinforced elastomeric layer, these normal forces are defined as
NB ¼
Z a

�a
pDX;x dx ð47Þ

NC ¼
Z a

�a
pDX2

;x dx ð48Þ
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Using Eqs. (18) and (29), the above equations become
NB ¼ fB
P
A

ð49Þ

NC ¼ fC
P
A

ð50Þ
with
fB ¼ 2 1 þ x þ 6

ðaaÞ2
� 2

aa
tanh aa � 1
� �

" #
ð51Þ

fC ¼ 8

a
1

5
þ 6

ðaaÞ2
þ 45

ðaaÞ4
þ 1

4
1 þ x þ 6

ðaaÞ2

" #2

�
9
5
þ x þ 18

ðaaÞ2

aa
tanh aa � 1

" #8<
:

9=
; ð52Þ
5. Stiffness equivalent to homogeneous beam

To apply the beam theory of Tsai and Kelly to analyze the multilayer isolators, the stiffness of a single
reinforced layer of elastomer derived in the previous sections has to convert to the stiffness of an equivalent
homogeneous beam. For the homogeneous beam, the bending stiffness and warping stiffness are defined as
M ¼ EIw;z and Q ¼ EJ/;z ð53Þ
However, the bending stiffness and warping stiffness of the single reinforced layer, presented in Eqs. (32)
and (35), are
M ¼ ðEIÞeff

w
te

and Q ¼ ðEJÞeff

/
te

ð54Þ
in which w and / are constant through the thickness of the elastomeric layer. If there are n layers of the
elastomer in the isolator, we have the following equivalence
w;z ¼
nw
h

and /;z ¼
n/
h

ð55Þ
in which h is the height of the isolator. The bending stiffness and warping stiffness of the equivalent homo-
geneous beam become
EI ¼ ðEIÞeff

h
nte

and EJ ¼ ðEJÞeff

h
nte

ð56Þ
Similarly, the shear modulus for the equivalent homogeneous beam is
G ¼ Ge

h
nte

ð57Þ
According to the theory of Tsai and Kelly (in press), when a vertical compression force and a horizontal
lateral force act on one end of the isolator, the lateral stiffness of the isolator KH can be expressed in terms
of the normalized compression force P/(GA), the rigidity ratio of the elastomer q defined as
q ¼ EI

GAh2
¼ ðEIÞeff

GeAh
2

ð58Þ
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and the two warping parameters jb and jc defined as
jb ¼
EI
EJ

GBþ NB

GA

� �2

¼ ðEIÞeff

ðEJÞeff

B
A
þ fB

A
P
GA

� �2

ð59Þ

jc ¼
EI
EJ

GC þ NC

GA

� �
¼ ðEIÞeff

ðEJÞeff

C
A
þ fC

A
P
GA

� �
ð60Þ
The cross-sectional properties, (EI)eff in Eq. (33), (EJ)eff in Eq. (36), B in Eq. (45), C in Eq. (46), fB in
Eq. (51), and fC in Eq. (52), are the functions of aa which is a parameter of the extension rigidity of the
reinforcement. From Eqs. (16) and (37), we know
aa ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12kS

a
tf

r
ð61Þ
When the reinforcement becomes inextensible, aa! 0. Usually, aa is a small number, such that its high-
order terms can be neglected. Substituting the following series expansion
aa
tanh aa

� 1 þ 1

3
ðaaÞ2 � 1

45
ðaaÞ4 þ 2

945
ðaaÞ6 � 1

4725
ðaaÞ8 þ 2

93555
ðaaÞ10 ð62Þ
into Eq. (27) and neglecting the high-order terms of aa, the warping coefficient becomes
x � � 3

7
1 þ 2

315
ðaaÞ2

� �
ð63Þ
Using Eqs. (62) and (63) and neglecting the high-order terms of aa, the cross-sectional properties can be
reduced to
ðEIÞeff � a3GeS
2 8

15
1 � 2

21
ðaaÞ2

� �
ð64Þ

ðEJÞeff � aGeS
2 32

3675
1 � 2

77
ðaaÞ2

� �
þ 1

2kS3ða=tfÞ3

( )
ð65Þ

B � 8

7
1 � 1

210
ðaaÞ2

� �
ð66Þ

C � 1

a
552

245
1 � 4

1449
ðaaÞ2

� �
þ 2S

kða=tfÞ3

( )
ð67Þ

fB � 12

35
1 þ 16

315
ðaaÞ2

� �
ð68Þ

fC � 1

a
216

245
1 þ 26

945
ðaaÞ2

� �
ð69Þ
Substituting Eq. (64) into (58) and using A = 2a gives
q � 4

15
S2 a

h

� �2

1 � 2

21
ðaaÞ2

� �
ð70Þ
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Substituting Eqs. (64)–(69) into Eqs. (59) and (60) gives
jb �
20 1 � 2

21
ðaaÞ2

h i
1 � 1

210
ðaaÞ2 þ 3

10
þ 8

525
ðaaÞ2

h i
P
GA

n o2

1 � 2
77
ðaaÞ2 þ 3675

64kS3ða=tf Þ3

h i ð71Þ

jc �
3 1 � 2

21
ðaaÞ2

h i
23 � 4

63
ðaaÞ2 þ 9 þ 26

105
ðaaÞ2

h i
P
GA þ 245S

12kða=tf Þ3

n o
1 � 2

77
ðaaÞ2 þ 3675

64kS3ða=tf Þ3

h i ð72Þ
6. Lateral stiffness and buckling load of isolators

Based on the theory of Tsai and Kelly (in press), Eqs. (70)–(72) indicates that the dimensionless lateral
stiffness of isolators KHh/(GA) is a function of the normalized compression force P/(GA), the modulus ratio
of the elastomer to the reinforcement k, the shape factor of the elastomer S, the width-thickness ratio of the
reinforcement a/tf and the width-height ratio of the isolator a/h. For the isolator with Ge = 0.7MPa,
Ef = 0.21 · 106 MPa and mf = 0.3, the corresponding k value in Eq. (37) is k = 3 · 10�6. For this particular
k value, the lateral stiffness calculated from the theory of Tsai and Kelly is plotted as a function of com-
pression force in Fig. 6 for S = 10, a/h = 1 and different a/tf values, in Fig. 7 for S = 10, a/tf = 80 and dif-
ferent a/h values, and in Fig. 8 for a/tf = 80, a/h = 1 and different S values. These figures show that the
lateral stiffness decreases with increasing the compression force. Larger reinforcement thickness, smaller
bearing height or larger shape factor of the elastomer will have higher lateral stiffness.

The buckling occurs when the lateral stiffness KH = 0. Based on the theory of Tsai and Kelly, the equa-
tion of buckling load Pcr becomes
ðEIÞeff

ðEJÞeff

fC
A

� fB
A

� �2
" #

P cr

GA

� �3

þ ðEIÞeff

ðEJÞeff

C
A
þ fC

A
� 2

fBB

A2

� �
þ p2q 1 þ ðEIÞeff

ðEJÞeff

fB
A

� �2
" #( )

P cr

GA

� �2

þ ðEIÞeff

ðEJÞeff

C
A
� B

A

� �2
" #

þ p2q 1 þ ðEIÞeff

ðEJÞeff

2
fBB

A2
� fC

A

� �� �( )
P cr

GA

� �

� p2q
ðEIÞeff

ðEJÞeff

C
A
� B

A

� �2
" #

þ p4q2

( )

¼ 0 ð73Þ

This is a cubic equation of the buckling load and can be solved by the numerical method for the specified
values of k, S, a/tf and a/h. For the isolators of k = 3 · 10�6, the variation of the buckling load with a/h is
plotted in Figs. 9 and 10 for S = 10 and 20, respectively, which compare the buckling loads of different rein-
forcement thicknesses and rigid reinforcement. The buckling load for the rigid reinforcement has the form
(Kelly, 1997; Tsai and Kelly, in press)
ðP crÞrigid ¼ GA
�1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4p2q

p
2

 !
ð74Þ
These figures show that the buckling load almost linearly varies with a/h and has little change between
a/tf = 160 and 320.

The ratios of Pcr solved from Eq. (73) to (Pcr)rigid shown in Eq. (74) are plotted as a function of reinforce-
ment thickness in Figs. 11 and 12 for S = 10 and 20, respectively, which show that the buckling load
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Fig. 6. Lateral stiffness as a function of compression load for different values of a/tf.
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Fig. 11. Buckling load varied with reinforcement thickness for S = 10.
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decreases with reducing the reinforcement thickness. After the thickness is reduced to about a/tf = 150,
there is only a negligible further reduction in the buckling load.
7. Conclusion

An analysis has been developed for the buckling load of elastomeric multilayer isolators that includes the
effect of the flexibility of the steel reinforcing plates. This analysis has treated the isolator as a short elastic
column in which shear deformation and warping of the cross-section are included. Pressure distributions in
the elastomeric layer bonded to flexible reinforcements under compression force, bending moment and
warping moment are derived from an assumed displacement field. The warping function of the cross-section
is determined from the condition that the compression force and bending moment are independent of the
warping function. After the warping-related parameters are established, the lateral stiffness of the isolator
varied with the compression load can be solved by the beam theory, from which a cubic equation for the
buckling load of the isolators is derived.

The buckling load of the isolators is a function of the ratio of elastic modulus between the elastomeric
layer and the reinforcement, the shape factor of the elastomeric layer, the width-thickness ratio of the rein-
forcement and the width-height ratio of the isolator. The buckling load decreases with reducing the rein-
forcement thickness. After the width-thickness ratio of the reinforcement is larger than 150, there is only
a negligible further reduction in the buckling load. The flexibility effect of reinforcements on the buckling
load of isolators is studied through the beam theory that assumes the warping of the cross-section is a cubic
function. To justify the accuracy of using this beam theory to study seismic isolators, further study by com-
paring the theoretical results with the numerical solutions of finite element analysis or the experimental test
of real models is required.
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